Centroidal Voronoi tessellation in universal covering space of manifold surfaces

نویسندگان

  • Guodong Rong
  • Miao Jin
  • Liang Shuai
  • Xiaohu Guo
چکیده

The centroidal Voronoi tessellation (CVT) has found versatile applications in geometric modeling, computer graphics, and visualization, etc. In this paper, we first extend the concept of CVT from Euclidean space to spherical space and hyperbolic space, and then combine all of them into a unified framework – the CVT in universal covering space. The novel spherical and hyperbolic CVT energy functions are defined, and the relationship between minimizing the energy and the CVT is proved. We also show by our experimental results that both spherical and hyperbolic CVTs have the similar property as their Euclidean counterpart where the sites are uniformly distributed with respect to given density values. As an example of the application, we utilize the CVT in universal covering space to compute uniform partitions and high-quality remeshing results for genus-0, genus-1, and high-genus (genus>1) surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPU-based computation of discrete periodic centroidal Voronoi tessellation in hyperbolic space

Periodic centroidal Voronoi tessellation (CVT) in hyperbolic space provides a nice theoretical framework for computing the constrained CVT on high-genus (genus > 1) surfaces. This paper addresses two computational issues related to such hyperbolic CVT framework: (1) efficient reduction of unnecessary site copies in neighbor domains on the universal covering space, based on two special rules; (2...

متن کامل

The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces

We study the combinatorial complexity of Voronoi diagram of point sites on a general triangulated 2-manifold surface, based on the geodesic metric. Given a triangulated 2-manifold T of n faces and a set of m point sites S = {s1, s2, · · · , sm} ∈ T , we prove that the complexity of Voronoi diagram VT (S) of S on T is O(mn) if the genus of T is zero. For a genus-g manifold T in which the samples...

متن کامل

Analysis of a Class of Symmetric Equilibrium Configurations for a Territorial Model

Motivated by an animal territoriality model, we consider a centroidal Voronoi tessellation algorithm from a dynamical systems perspective. In doing so, we discuss the stability of an aligned equilibrium configuration for a rectangular domain that exhibits interesting symmetry properties. We also demonstrate the procedure for performing a center manifold reduction on the system to extract a set ...

متن کامل

Analysis of a Class of S5anmetric Equilibrium ' Configurations for a Territorial Model

Motivated by an animal territorlality model, we consider a centroidal Voronoi tessellation algorithm from a dynamical systems perspective. In doing so, we discuss the stability of an aligned equilibrium configuration for a rectangular domain that exhibits interesting symmetry properties. We also demonstrate the procedure for performing a center manifold reduction on the system to extract a set ...

متن کامل

Constrained Centroidal Voronoi Tessellations for Surfaces

Abstract. Centroidal Voronoi tessellations are useful for subdividing a region in Euclidean space into Voronoi regions whose generators are also the centers of mass, with respect to a prescribed density function, of the regions. Their extensions to general spaces and sets are also available; for example, tessellations of surfaces in a Euclidean space may be considered. In this paper, a precise ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2011